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Abstract 

Purpose of review: Instrumental variable (IV) methods continue to be applied to questions ranging from 

genetic to social epidemiology. In the epidemiologic literature, discussion of whether the assumptions 

underlying IV analyses hold is often limited to only certain assumptions and even then, arguments are 

mostly made using subject matter knowledge. To complement subject matter knowledge, there exist a 

variety of falsification strategies and other tools for weighing the plausibility of the assumptions 

underlying IV analyses. 

Recent findings: There are many tools that can refute the IV assumptions or help estimate the magnitude 

or direction of possible bias if the conditions do not hold perfectly. Many of these tools, including both 

recently developed strategies and strategies described decades ago, are underused or only used in specific 

applications of IV methods in epidemiology. 

Summary: Although estimating causal effects with IV analyses relies on unverifiable assumptions, the 

assumptions can sometimes be refuted. We suggest that the epidemiologists using IV analyses employ all 

the falsification strategies that apply to their research question in order to avoid settings that demonstrably 

violate a core condition for valid inference. 
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Introduction 

Many epidemiologists rely on, but are simultaneously skeptical of, the exchangeability (or no 

uncontrolled confounding) condition required to identify causal effects in our typical analyses of 

observational studies. Exchangeability is difficult to achieve and impossible to verify, which has led some 

epidemiologists to prefer instrumental variable (IV) methods that trade in this exchangeability condition 

for other conditions that are perceived as more plausible in some settings. 

IV analysis requires first and foremost an instrumental variable. That is, it requires a variable that meets 

three conditions: (1) it is associated with the exposure (“relevance”), (2) it only affects the outcome 

through the exposure (“exclusion restriction”) and (3) its effect on the outcome is unconfounded 

(“exchangeability”) [1].*  These are the three requisite IV conditions, although as we describe below 

additional conditions are necessary to identify causal effects. We can see then that, similar to the 

exchangeability condition in traditional epidemiologic approaches, IV analysis relies on unverifiable 

conditions. As IV analyses have grown in popularity in recent decades, so have concerns over the 

plausibility of these assumptions. The most common method of arguing that the IV assumptions hold is 

using substantive knowledge. However, there are many methods and tools that use the data in hand that 

can further strengthen or refute the IV assumptions or help estimate the magnitude or direction of possible 

bias if the conditions do not hold perfectly. Many of these methods are underused or only used in specific 

applications of IV methods in epidemiology [2]. 

Here, we aim to describe and discuss the tools that are available to epidemiologists to strengthen IV 

analyses (Table 1). Before continuing, we note that IV methods have generally been applied by 

epidemiologists in four settings: Mendelian randomization studies that propose genetic variants as 

instruments [3]; pharmacoepidemiologic studies that propose geographic, provider, or temporal variations 

in prescribing practices as instruments [4]; social epidemiology that propose geographic or temporal 

variation in policies as instruments [5]; and per-protocol analyses of randomized trials that propose 

random assignment as an instrument [6]. Each of these settings has unique challenges, but more often 

than not the lessons learned from or tools developed within one of these settings could be translated to the 

others. Given this, our discussion attempts to span all four settings. 

For the purposes of this review, we always assume the goal is to obtain a numeric estimate for an average 

causal effect of a treatment or exposure on an outcome. Investigators using IV methods sometimes have 

other goals, including bounding causal effects or testing causal null hypotheses; reviews of these topics 

can be found elsewhere [7]. 

Condition (1): Relevance 

The first and only verifiable condition is that the proposed instrument must be associated with the 

exposure. Verifying this only requires checking whether there is an association between the proposed 

instrument and the exposure. The proposed instrument does not need to cause the exposure but proxy 

instruments (i.e., instruments that are correlated with but do not cause the exposure themselves) can 

complicate the interpretation of effect estimates, as we will explain later [8,9]. 

Although the relevance condition (1) only requires an association exists, weak associations can mean that 

the analysis is vulnerable to weak instrument bias either via finite-sample limitations or by amplifying 

biases due to violations of other assumptions [10]. Therefore, strong instruments are generally preferred 

over weak instruments. However, deciding whether to use a proposed instrument (or choosing between 

multiple proposed instruments) solely based on strength, for instance using the F statistic or R2, can also 

lead to bias because these estimates are more likely to be overestimates of the true instrument strength 

                                                           
* The IV conditions have been formalized a number of ways, but for the purposes of this review the primary differences between these 
formalizations are not usually relevant. For more information on the various formalizations, see reference [7]. 
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[11]. These measures of a proposed instrument’s strength are also less directly relevant for understanding 

whether and how a weak association between the proposed instrument and exposure would result in 

amplifying biases due to violations of other assumptions. 

Condition (2): Exclusion restriction 

The exclusion restriction condition (2) requires that any effect of the proposed instrument on the outcome 

is exclusively through its potential effect on exposure. This assumption is not verifiable. Therefore, 

substantive knowledge of the relationship between the proposed instrument, the exposure and the 

outcome must be used to justify the plausibility of the exclusion restriction.  

There exist, however, methods of falsifying the exclusion restriction with the data, meaning that it is 

sometimes possible to detect that the assumption is violated (but we cannot ever confirm that it holds). 

More specifically, many of the available falsification tests jointly test condition (2) alongside condition 

(3) discussed below. However, because there are settings where condition (3) is expected to hold by 

design, these falsification strategies are sometimes described as applying to condition (2) alone, which 

can aid interpretation of the reason for or degree of violation. For example, conditions (2)-(3) jointly can 

be tested using the instrumental inequalities [12], which can be applied in many settings and can be easily 

implemented as a one-sided test of a 2x2 table in the setting of a binary proposed instrument, binary 

exposure, and binary outcome [13]. In the all-binary setting and assuming condition (3) holds, a detected 

violation of the instrumental inequalities also provides some information on the subset of the study 

population the violation of condition (2) occurs [14].  

Other falsification strategies require leveraging additional substantive knowledge. When it is known, for 

example, that a subgroup can be identified in which the proposed instrument does not affect the exposure, 

any estimated association between proposed instrument and outcome must be due to the a violation of 

condition (2) or (3) [15,16]. For example, Kang and colleagues [16] check whether a genetic instrument 

for malaria has an effect on their outcomes of interest in countries where malaria does not occur. In such 

places, the genetic instrument cannot have an effect on malaria and any relationship with the outcome 

must be due to a violation of condition (2) or (3). Assuming that the bias-causing mechanism is 

homogeneous across subgroups and that the choice of subgroup does not induce selection bias, the bias 

measured in this subgroup can be used to correct for the violation in the entire population [17]. Another 

falsification strategy can be used if the confounding between the exposure and the outcome is known to 

be positive (i.e., the confounded estimate is larger in magnitude than the true causal effect). This 

knowledge implies specific relationships between the proposed instrument, exposure and outcome that 

can be checked with the data [18].  

Condition (3): Exchangeability 

In essence, the exchangeability condition (3) takes the usual exchangeability assumption but forces us to 

consider exchangeability for the proposed instrument rather than the exposure. Why then, if we are so 

worried about the exchangeability assumption in traditional analyses, do we find it more plausible in IV 

analyses? Proposed instruments are often selected because there are a priori reasons to believe that they 

are exchangeable with respect to the outcome. For instance, if conducting an IV analysis in a randomized 

trial or lottery study with random assignment as the proposed instrument, exchangeability is expected at 

baseline by design. In other settings, this assumption must be argued to hold through subject matter 

knowledge.   

One indirect way of assessing this assumption is to look at whether there is imbalance in measured 

covariates across levels of the proposed instrument, similar to covariate balance checks in randomized 

controlled trials. Imbalance in measured covariates can in principle be eliminated by adjusting for them in 

the analysis, but such imbalances can be suggestive of imbalances across unmeasured variables. As with 
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covariate balance checks in general, an understanding of the causal structure is needed to know whether 

any perceived imbalances are potentially indicative of bias. In the causal diagram in Figure 1, X1, X2, X3, 

and X4 are expected to be associated with the proposed instrument, but only imbalances in X1 and X2 reflect 

violations of the instrumental conditions (conditions (3) and (2), respectively). Further, of course it is 

possible that measured covariates appear balanced across levels of the proposed instrument but that there 

is a lack of exchangeability due to unmeasured covariates: that is, again we see that we cannot verify 

condition (3) but may sometimes find suggestive evidence against it. Finally, because the bias due to a 

violation of condition (3) is a function of the proposed instrument’s strength, it has been argued that these 

types of covariate balance checks should be augmented to incorporate the proposed instrument’s strength 

into presentation, especially if presented in conjunction with a non-IV analysis [19]. 

Another indirect way of assessing this assumption is to look at negative outcomes, similar to negative 

outcome controls used in non-IV studies [20,21]. Of course, such assessment requires the availability of a 

secondary outcome that is not expected to be affected by the exposure (or the proposed instrument) but 

could suffer from the same type of violation of condition (3) that the investigators are concerned about for 

the primary research question. 

Estimating the average treatment effect with condition (4h): Homogeneity 

In order to obtain a point estimate, a fourth assumption is required and the choice of assumption 

determines the causal parameter of interest. We first consider the condition (4h) under which the average 

causal effect is identified. 

The homogeneity assumption underlying the standard IV estimator requires that the proposed instrument 

does not modify the effect of the exposure on the outcome among the exposed and unexposed on the 

additive scale. If any unmeasured confounder of the exposure-outcome relationship is also an effect 

measure modifier, then it is usually not reasonable to assume condition (4h) homogeneity [9]. Some 

investigators propose conditioning on measured covariates that are perceived to be important effect 

measure modifiers to recover the average causal effect [22,23].  

Assessment of the homogeneity conditions remains difficult, and discussions of this condition remain 

complicated in the literature because debates remain on how prevalent relevant heterogeneity is in 

epidemiology [24]. (Of course, this varies depending on the study question.) Some relatively simple 

checks have been proposed to falsify or understand the importance of condition (4h) in a particular study. 

For example, conditions (1)-(3) alone allow for bounding of the average causal effect [12,25,26], which 

means that when the bounds achieved under these three conditions alone are wide then it is at least 

mathematically possible for the point estimate to be very different from the true causal effect due to a 

violation of condition (4h).  

In the simple setting of a dichotomous source of effect measure modification, Brookhart et al. [27] 

showed that the bias due to a violation of condition (4h) is a function of how the strength of the proposed 

instrument differs within strata of the modifier. Given this, the investigators proposed presenting how the 

strength of the proposed instrument differs across measured covariates. The logic here is similar to that of 

presenting covariate balance when considering condition (3): any detected differences in measured 

covariates could theoretically be accounted for by including the modifier in the model, but may arguably 

indicate that there are unmeasured sources of effect measure modification that violate condition (4h). 

When both the proposed instrument and exposure are binary, and the proposed instrument causes the 

exposure, then one can compare the counterfactual outcomes between “compliance types” as an indirect 

assessment of condition (4h) [28]. A study participant’s membership in one of the four mutually exclusive 

compliance types is determined by how that person is affected by the instrument: people who are exposed 

regardless of the instrument (“always-takers”), people who are never exposed regardless of the instrument 
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(“never-takers”), people who are coerced to be exposed because of the instrument (“compliers”) and 

people who do the opposite of “compliers” (“defiers”). When there are no “defiers”, it is possible to 

estimate the counterfactual outcome of both “never-takers” and “compliers” under no exposure from the 

data. If these values are different, it is calls the homogeneity assumption into question. The same can be 

done with the counterfactual outcomes of “always-takers” and “compliers” under exposure.  

Finally, while the usual IV estimators tend to assume additive effect homogeneity, there is another IV 

estimator based on a multiplicative rather than additive structural mean model that relies on a similar 

assumption but on the multiplicative scale [9,25,29]. As homogeneity cannot simultaneously be satisfied 

on both scales except under the null, careful thought should be given to whether one of these two scales 

and therefore one of these two types of conditions (4h) is more likely to hold.  

Estimating the local average treatment effect with condition (4m): Monotonicity 

Economists, who are responsible for developing much of the early theory of IV methods, have generally 

been skeptical of the homogeneity condition (4h) and instead looked toward a monotonicity condition 

(4m) as a sometimes more plausible, alternative assumption. In the usual way that condition (4m) is 

evoked, monotonicity requires that the proposed instrument only affects the exposure in one direction in 

all individuals. In other words, there do not exist both people whose exposure level would have been 

increased by increases in the proposed instrument and people whose exposure level would have been 

decreased by increases in the proposed instrument. (Recently, different versions of monotonicity 

conditions have been described that can change the interpretation of the effect estimate, but go beyond the 

purposes of this review [30,31].) If monotonicity is assumed instead of homogeneity, an average causal 

effect in the subgroup of “compliers” (described above) is identified [32]. Of note, some investigators 

have argued against estimating this effect because the subgroup of “compliers” is not identified, and for 

proxy or non-binary proposed instruments the interpretation of this subgroup becomes even less clear 

[8,9,33]. The non-identifiability concern is partially mitigated when the proposed instrument and 

exposure are binary and the proposed instrument is causal: then conditions (1)-(3) and (4m) allow us to 

estimate the proportion of “compliers” as well as describe their characteristics in measured covariates 

[34]. When the proposed instrument is a proxy (i.e., non-causal) instrument, estimating the proportion of 

or characterizing the “compliers” becomes more difficult and requires additional assumptions and 

considerations of the underlying causal instrument [8,9]. 

When the exposure is continuous, violations of condition (4m) can be found by graphing the difference in 

cumulative distribution in exposure for each level of the proposed instrument [35]. If the difference in 

cumulative distribution functions changes sign over the range of feasible exposure levels, then a violation 

of the monotonicity assumption is detected. Failure to detect a violation, however, does not constitute 

support for the monotonicity assumption. 

When the proposed instrument is a measure of a decision-maker’s preference, such as the commonly 

proposed provider preference instruments in pharmacoepidemiology studies, then it is also possible to 

empirically assess the monotonicity condition (4m) by supplementing the data with a survey of the 

providers [31]. By asking providers about their treatment decisions for the same set of (possibly 

hypothetical) patients, investigators can measure the compliance type distribution and potentially find 

evidence against monotonicity.  

Finally, relatively simple inequalities can be checked to falsify monotonicity in the simple case of a 

binary proposed causal instrument, binary exposure, and binary outcome (assuming conditions (1), (2), 

and (3) hold).  Coincidentally, these inequalities will be violated whenever the bounds on the average 

causal effect proposed by Manski and Robins differ from those proposed by Balke and Pearl [12,25,26]; 

see reference [7] for more detail. 
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Settings with multiple proposed IVs 

In some studies, investigators suggest that there is not just one but multiple proposed instruments. In such 

settings, it is sometimes possible to leverage this added potential information in ways that relax the 

instrumental conditions or that mitigate bias due to some of the proposed instruments not being 

instruments. For a more complete review of the available sensitivity analyses and robust methods, see 

reference [36]. We briefly highlight how having multiple proposed instruments can potentially address or 

detect some of the biases due to violations of the above-described conditions for each proposed 

instrument. 

First, having multiple proposed instruments affords more ways to conduct an IV analysis. Investigators 

proposing multiple instruments have historically estimated causal effects by meta-analyzing individual 

estimates, by using all proposed instruments in the same two-stage least squares regression models, and 

by combining the proposed instruments into a summary risk score [37] . Generally, these methods can be 

more robust to weak instrument biases, although it is important to be aware of the assumptions made in 

each case. Newer estimators, primarily developed in the Mendelian randomization literature, can also 

allow for some types of violations of the exclusion restriction condition (2) [38–40] by leveraging 

additional assumptions (for a complete review of these additional assumptions, see reference [36]). MR-

Egger in particular allows for certain violations of condition (2) by introducing homogeneity and linearity 

assumptions alongside the assumption that the strength of each proposed instrument is independent of the 

size of the direct effect violating condition (2); under these assumptions, MR-Egger can also be used to 

detect the existence of these types of violations of condition (2) for some of the proposed instruments 

[38]. 

Another oft-used falsification strategy in the multiple instrument setting is the Hausman over-

identification test in which all proposed instruments are regressed on the residuals of a regression of the 

outcome on the exposure. It can identify whether at least one of the proposed instruments used is invalid 

but cannot identify which [41]. Moreover, it cannot detect which condition is violated among conditions 

(2), (3), or (4h). Such a test is especially underpowered and may not valid for weak instruments [42].  

Importantly, because any sound method for estimating a causal effect or falsifying assumptions via 

multiple proposed instruments needs to be targeting the same average causal effect (rather than the 

instrument-specific causal effects within the “compliers”), these approaches all rely on a homogeneity 

condition (4h) or even stronger homogeneity or linearity conditions.  This means that using multiple 

proposed instruments in settings where effect heterogeneity is likely (i.e., in which condition (4h) is 

unlikely to hold) makes interpreting effect estimates nearly impossible [43].  

Beyond the core IV conditions 

We have discussed the core assumptions that IV analyses make in replace of the usual exchangeability 

condition underlying non-IV analyses. However, there are some additional considerations worth noting. 

First, the core above-described assumptions replace our more typical assumption of no uncontrolled 

baseline confounding, but this means that any selection or information biases that could affect a non-IV 

analysis in the same study may also be problematic for an IV analysis. In addition to the more familiar 

selection biases (e.g., due to loss to follow-up [44,45]), subtler selection biases can arise in IV analyses 

that select on a subset of possible exposures [46,47]. Also, it is of course possible if not likely that in 

many observational studies with proposed instruments, the investigators may believe the  above-described 

assumptions do not hold unconditionally but are more reasonable within levels of measured covariates; in 

such cases, investigators may consider applying the falsification strategies and tools described here within 

levels of the measured covariates. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Importantly, estimating an average causal effect in an IV or non-IV analysis alike requires having an 

unambiguous definition of the intervention regardless of the estimation procedure used [48,49]. In some 

studies employing IV analyses, such as with randomized trials or program evaluation, the intervention is 

well-defined because it has been actually implemented. However, some studies employing IV analyses, 

such as many Mendelian randomization studies, the intervention itself is not well-defined [50]. This 

makes it very difficult to interpret or assess the validity of any presented effect estimates. Such vagueness 

also often overlooks the fact that classical IV methods are developed in the context of time-fixed 

treatments, and thus when the exposures can vary over time it is both less clear what investigators are 

trying to estimate and why the above-described assumptions are reasonable [50–52] .   

Finally, up until now, our consideration of falsification strategies and related tools has focused on 

understanding the validity of an IV analysis. Sometimes IV analyses are performed alongside non-IV 

analyses, and investigators are interested in understanding whether the IV analysis is more or less biased 

than the non-IV analysis. Bias component plots have been proposed as one option for considering relative 

bias due to violations in exchangeability across IV and non-IV methods [19]. Investigators also 

sometimes begin by comparing the estimates from the two approaches, either using subjective criteria or a 

formal test [41].  However, any detected differences could mean that the IV analysis is biased, the non-IV 

analysis is biased, the analyses are estimating different causal effects (e.g., the effect in the “compliers” 

vs. the average causal effect), or all of the above. 

Conclusion 

Addressing a causal question with methods that make different assumptions demonstrates whether 

estimates are sensitive to the assumptions that differ across methods. In this way, estimates obtained from 

IV analyses can nicely complement estimates from analyses that require measuring and appropriately 

adjusting for confounders. However, the plausibility of these and any conditions required for causal 

interpretations must still be verified when possible and, when verification is not possible, efforts must be  

made to falsify the conditions as feasible. Here we have assembled a list of techniques that can be used to 

falsify or weigh the reasonableness of the core conditions underlying IV analyses. By using all techniques 

applicable to a specific epidemiologic IV analysis, we can use the data to its fullest extent.  
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Figure 1: Causal directed acyclic graph of a proposed instrument Z, exposure A, outcome Y, and 

four additional covariates X1, X2, X3, and X4. By faithfulness, we would expect that Z would be 

associated with X1, X2, X3, and X4; however, only associations with X1 and X2 indicate violations of 

the instrumental conditions. Additional unmeasured shared causes of variables in this graph are 

omitted to simplify presentation. 

Table 1: Summary of falsification strategies and related tools for assessing the core conditions for 

an instrumental variable analysis. 
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Table 1: Summary of falsification strategies and related tools for assessing the core conditions for an 

instrumental variable analysis.  

Conditions Strategy Reference 
Restrictions on the settings in which 

the strategy is applicable 

(1) 
Check association between 

instrument and exposure 

N/A 

(2), (3), (4h) Over-identification [41] Multiple proposed instruments 

(2), (3) 
Leveraging positive 

confounding 
[18] 

Requires knowledge of the direction 

of confounding 

(3) Negative controls [20] 
Requires knowledge of the existence 

of an appropriate negative control 

(2) MR-Egger [38] 
Multiple proposed instruments; 

requires additional assumptions* 

(2), (3) 

Check in a subgroup where 

the instrument does not 

work 

[15,16] 

Requires knowledge of the existence 

of such a subgroup 

(2), (3) IV inequalities [12] Exposure cannot be continuous 

(3) 
Covariate balance and bias 

component plots 
[19] 

N/A 

(4h) 

Checking for differences in 

instrument strength across 

covariates 

[27] N/A 

(4h) 

Estimate counterfactual 

values among “always-

takers”, “compliers” and 

“never-takers” 

[28] 

Condition (4m) must hold and the 

proposed instrument must be causal 

(4m) 
Cumulative distribution 

graphs 
[35] 

Exposure must be continuous 

(4m) Monotonicity inequalities [12,25,26] 
Causal binary proposed instrument, 

binary exposure, binary outcome 

(4m) 
Survey of provider 

preferences 
[31] 

Proposed instrument must be 

preference 

*See text for further description of the additional assumptions.
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