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ABSTRACT 

Mendelian randomization (MR) is used to answer a variety of epidemiologic questions. One stated 

advantage of MR is that it estimates a "lifetime effect" of exposure though this term remains 

vaguely-defined. Instrumental variable analysis, on which MR is based, has focused on estimating 

the effects of point or time-fixed exposures rather than "lifetime effects". We use an empirical 

example with data from the Rotterdam Study to demonstrate how confusion can arise when 

estimating "lifetime effects". We provide one possible definition of a lifetime effect:  the average 

change in outcome measured at time t when the entire exposure trajectory from conception to time 

t is shifted by one unit. We show that MR only estimates this type of lifetime effect under specific 

conditions, for example when the effect of the genetic variants used on exposure do not change 

over time (which many genetic variants commonly used in MR do). Lastly, we simulate the 

magnitude of bias that would result in realistic scenarios that use genetic variants with effects that 

change over time. We recommend future MR studies carefully consider the effect of interest and 

how genetic variants whose effects change with time may impact the interpretability and validity 

of their results. 
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Introduction 

Mendelian randomization (MR) uses genetic variation as a proposed instrumental variable to 

estimate the effect of an exposure on an outcome (1). The increasing availability of genetic data 

and the perception that the assumptions required for valid causal inference with MR are more 

plausible than those required for traditional methods have contributed to its popularity. 

To estimate the effect of an exposure, MR relies on classical (2) or more robust versions (3) of 

instrumental variable analyses (IV). However, instrumental variable analyses have been developed 

to estimate the effect of exposure at one point in time while MR is often interpreted as a 

longitudinal or lifetime effect of a time-varying exposure (1, 4-6). The rationale behind this 

difference in interpretation is likely that genetic effects begin at conception and are present 

throughout the lifetime mimicking, to some extent, a longitudinal intervention. The validity of this 

interpretation of MR as a lifetime effect has, to our knowledge, never been statistically justified 

with time-varying exposures. 

The lifetime effect interpretation commonly seen in MR studies also lacks clarity (7). To be a well-

defined causal construct, a lifetime effect requires specification of a time frame and a comparison 

of treatment regimens (8). Not only is the lifetime effect interpretation used in MR ambiguous, but 

a recent review of MR contributions pointed out that even an ambiguous interpretation would have 

many exceptions depending on the biological context (9). A less ambiguous, well-defined causal 

definition of the MR parameter would make its clinical importance clearer and help identify when 

MR approaches would be valid. 

Here, we explore issues related to MR with time-varying exposures and the estimation of lifetime 

effects. We provide a definition of a lifetime effect and derive the conditions under which common 
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approaches to MR estimates can be interpreted in this way. We begin with a simple empirical 

example to demonstrate a case where confusion arises in the interpretation of a MR study. 

An empirical example of the difficulty of MR with time-varying exposures 

Suppose our goal is to estimate "the" lifetime effect of body mass index (BMI) on systolic blood 

pressure using the rs9939609 variant within the FTO locus as a proposed genetic instrument. By 

proposing this genetic variant as an instrument, we (and other investigators who have proposed 

this instrument) are assuming that the genetic variant is associated with BMI, has no effect on 

blood pressure except through its effect on BMI, and shares no causes with blood pressure. 

Additionally, to obtain an average treatment effect, we further assume effect homogeneity (10). 

To estimate this effect, we used data from the Rotterdam Study, a prospective cohort of people 55 

years or older living in Rotterdam (11). The medical ethics committee of the Erasmus University 

of Rotterdam approved the study, and informed consent was obtained from all participants. We 

included all participants who contributed to follow-up visits between 2009 and 2013 (n = 5123). 

The MR estimate, estimated via IV analysis, can be obtained by dividing the per allele effect of 

FTO on systolic blood pressure by the per allele effect of FTO on BMI. Each high-risk allele was 

associated with an increase of 0.70mmHg (95% confidence interval (CI): -0.16, 1.57) in systolic 

blood pressure and an increase of 0.32kg/m2 (95%CI: 0.15, 0.49) in BMI. Therefore, the IV 

estimate of the effect of BMI on systolic blood pressure is 0.70/0.32 = 2.19 mmHg per kg/m2 

(95% CI: -0.65, 5.04). 

Previous literature suggests, however, that the relationship between FTO and BMI changes with 

age (12–14). This time-varying relationship is also observed in the Rotterdam study (Figure 1). 

The per allele effect estimate at age 55 years is over 1kg/m2 (with wide confidence intervals) 
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while the estimate at age 75 is nearly null. Therefore, measuring the exposure at different ages 

would result in very different IV estimates because of changes in the denominator of the IV 

estimate even when the numerator remains the same. If BMI was measured at age 55 in all 

participants the IV estimate would therefore be around 0.70/1 = 0.70mmHg/kg/m2. If BMI was 

measured at age 75, the denominator of the IV estimate would be very small, let us say 0.1 kg/m2 

and therefore the estimate would be 7.0 mmHg per kg/m2 found previously. Given that very 

different estimates can be obtained by measuring the exposure at different times, several questions 

arise: what 'lifetime' effects are we actually estimating, and under what assumptions would one or 

both of these estimates be valid? From a public health perspective, addressing these questions is 

essential for these numeric estimates to be informative, as it would be important to discern whether 

changes in BMI would result in small or substantial changes in blood pressure. 

This simple example brings up many important questions about using MR with time-varying 

exposures. In the following sections we will explore how this can complicate MR analyses, change 

the interpretation of MR estimates and under what specific conditions MR estimates can be validly 

interpreted as well defined effects. 

A clearer definition of lifetime effects 

A clearer definition of what is meant by lifetime effects in the context of MR is required in order 

to determine whether common MR analyses are in fact estimating lifetime effects. The most 

common definition in the MR literature is "the effects of long-term differences in exposures on 

disease risk,"(1) but this lacks the clarity of a properly defined causal parameter (8). Does long-

term necessarily refer to the effect from conception or can it also refer to a shorter time period? 

Do long-term differences refer to differences in average lifetime exposure, differences induced by 
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intervening on exposure at conception or maintaining a fixed difference in exposure at all time 

points? 

We will consider the canonical IV causal diagram with a single binary genetic variant 𝐺, 

continuous exposure 𝐴, continuous outcome 𝑌 and unmeasured confounders 𝑈 (Figure 2A). We 

will use counterfactual notation such that 𝑌𝑘
𝑎 represents the outcome that would have been 

observed at age 𝑘 had 𝐴 been set to 𝑎. Using this notation the effect of increasing a time-fixed 

exposure by one unit at age 𝑘 would be 𝐸[𝑌𝑘
(𝑎+1)

] − 𝐸[𝑌𝑘
𝑎]. In the context of MR with a time-

fixed exposure (i.e. an exposure whose level is fixed at conception such as eye color or blood type) 

this can be interpreted as the effect of increasing 𝐴 by one unit over the entire lifetime on 𝑌 at age 

𝑘. 

With a time-varying exposure, 𝐴 is not a single value but a vector 𝐴𝑘 = (𝐴0, 𝐴1, . . . , 𝐴𝑘) 

representing the value of 𝐴 at each time point between conception (𝑘 = 0) and time 𝑘 when the 

outcome is measured (Figure 2B). This vector can be thought of as the trajectory taken by 𝐴 similar 

to the allele specific BMI trajectories depicted in Figure 1. Therefore, we propose the following 

definition for a lifetime effect of a time-varying exposure in the context of MR: the effect of 

shifting the entire exposure trajectory (𝐴) by one unit on 𝑌 at time 𝑘. Another way to state this is 

the effect of increasing the exposure by one unit at every point in time. This particular definition 

of the lifetime effect can be written in counterfactual notation as 𝐸[𝑌𝑘
𝑎+1] − 𝐸[𝑌𝑘

𝑎]. 

Note the necessity of specifying the time at which the outcome is measured. For any exposure with 

cumulative effects starting at conception, the lifetime effects must be time or age-specific because 

older people will be exposed for longer periods of time. This means cumulative effects must always 

be heterogeneous across age. For some types of non-cumulative exposures or cumulative 
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exposures over shorter time periods, it is possible for lifetime effects to be constant across different 

age groups. 

 

A simple example of MR with a time-varying exposure 

Applying the above-defined definition of lifetime effects to a simple example with two time points 

will clarifies what is happening in the previous empirical example. We assume the causal structure 

in Figure 3 with binary genetic variant 𝐺, continuous exposure 𝐴𝑘 which can take different values 

at 𝑘 = 0 and 𝑘 = 1, and outcome 𝑌. The 𝛾 above each edge represents the causal effect of one 

variable on another, which, for simplicity, we assume is linear and constant for all causal 

relationships depicted. We have chosen two time points for simplicity but in Web Appendix 1 we 

extend this logic to continuous time.  

The lifetime effect of increasing the exposure trajectory 𝐴 by one unit in this example is simply 

the sum of the effects of 𝐴0 and 𝐴1 on 𝑌𝑘: 𝛾4 + 𝛾5. The effect of 𝐺 on 𝑌, the numerator of the IV 

estimator, is the sum of the three possible pathways between them: 𝛾1 ∗ 𝛾4 + 𝛾1 ∗ 𝛾3 ∗ 𝛾5 + 𝛾2 ∗

𝛾5. The effect of 𝐺 on 𝐴 can take two values in this example depending on when 𝐴 was measured. 

At time 0, the effect of 𝐺 on 𝐴0 is 𝛾1 and at time 1, the effect of 𝐺 on 𝐴1 is 𝛾1 ∗ 𝛾3 + 𝛾2. As such, 

there are at least two different IV estimates we may consider computing, by dividing the effect of 

𝐺 on 𝑌 by the effect of 𝐺 on 𝐴 at each time point: 
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𝑀𝑅0 =
𝛾1 ∗ 𝛾4 + 𝛾1 ∗ 𝛾3 ∗ 𝛾5 + 𝛾2 ∗ 𝛾5

𝛾1

= 𝛾4 + 𝛾5(𝛾3 +
𝛾2

𝛾1
)

𝑀𝑅1 =
𝛾1 ∗ 𝛾4 + 𝛾1 ∗ 𝛾3 ∗ 𝛾5 + 𝛾2 ∗ 𝛾5

𝛾1 ∗ 𝛾3 + 𝛾2

= 𝛾4(
𝛾1

𝛾1 ∗ 𝛾3 + 𝛾2
) + 𝛾5

 

For both 𝑀𝑅0 and 𝑀𝑅1, the terms inside the parentheses bias the estimates away from the true 

value. If we modify our example so the genetic effect on exposure is constant over time, the bias 

is eliminated. More specifically, if the genetic effect is constant over time then the effect of 𝐺 on 

𝐴0 (𝛾1) is equal to the effect of 𝐺 on 𝐴1 (𝛾1 ∗ 𝛾3 + 𝛾2). This equality can be rewritten as 𝛾3 = 1 −

𝛾2

𝛾1
 and substituted into the equation for 𝑀𝑅0: 

𝑀𝑅0 = 𝛾4 + 𝛾5(1 −
𝛾2

𝛾1
+

𝛾2

𝛾1
)

= 𝛾4 + 𝛾5

 

We can do the same with 𝑀𝑅1 substituting 𝛾1 for 𝛾1 ∗ 𝛾3 + 𝛾2: 

𝑀𝑅1 = (
𝛾1

𝛾1
) ∗ 𝛾4 + 𝛾5

= 𝛾4 + 𝛾5

 

Therefore, even when 𝐴 is time-varying, the IV estimate using either time point could potentially 

be a valid estimate of the lifetime effect of 𝐴 on 𝑌 when the relationship between 𝐺 and 𝐴 is 

constant through time. However, when the effect of 𝐺 on 𝐴 changes over time, the IV estimate 

will be a biased estimate of the lifetime effect. The intuition behind this result is simple: if the 

relationship between 𝐺 and 𝐴 changes over time, it cannot be adequately summarized by 

measuring it at one time point.  
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MR and time-varying exposures: a simulation 

To learn about the magnitude and direction of bias with realistic parameters, we performed analytic 

derivations for the following series of simulated scenarios. We simulate a longitudinal relationship 

between a binary genetic variant 𝐺, an exposure 𝐴 and an outcome 𝑌 running the simulations to 

age 30 and age 50, with relationships between variables informed in part by prior literature on FTO 

and BMI (14).  e used four different gene-exposure relationships depicted in each column of Figure 

4  where the solid line is the per allele effect at different points in time. The first column represents 

a constant genetic effect where the per allele effect of 𝐺 is constant over time. The second and 

third columns represent genetic variants whose effects increase and decrease over time 

respectively. The last column roughly emulates the relationship between FTO and BMI where the 

largest per allele difference occurs around age 20 and decreases thereafter. Where the per allele 

effect varies with time, the maximum change was 0.5 𝑘𝑔/𝑚2 to match a conservative estimate of 

the greatest change observed in the effect of FTO on BMI (15). 

Each row in Figure 4  represents one of the four different exposure window scenarios we used. 

Here, an exposure window is defined as the time period during which the exposure is relevant to 

the etiology of the outcome (16). In other words, only changes in exposure during the exposure 

window will affect the outcome holding exposure at other time points constant.  The dashed lines 

represent the instantaneous effect of exposure at different points in time on 𝑌𝐾. The first row 

represents a pure cumulative effect where exposure at any time point has the same effect on 𝑌𝐾. In 

the second row, the effect of recent exposure is stronger and is roughly limited to thirty years 

before 𝐾 though most of the effect comes from the last ten years. Note that in the recent exposure 

scenario, the exposure window is relative to the age when the outcome is measured. The dashed 

gray line, therefore, represents the exposure window when the outcome is measured at age 30. The 
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third row represents a critical exposure window where only exposure around age 13 (i.e., slightly 

before the available initial measurement of exposure) affects 𝑌𝐾. The last row is a simple increasing 

exposure window where later exposure has a larger effect on 𝑌𝐾. All exposure windows were 

scaled to make the lifetime effect at age 50 equal to 2 and the lifetime effect at 30 was calculated 

by taking the area under the solid line in Figure 4 from birth to age 30. Altogether, we selected 

these scenarios to represent some biologically plausible relationships between FTO, BMI through 

mid-life, and blood pressure (15) while nonetheless relevant for an arbitrary MR genetic variant, 

exposure, and outcome combination. 

The IV numerator, the effect of 𝐺 on 𝑌𝐾, was calculated by multiplying the genetic effect on 

exposure (the dashed line) by the effect of exposure on the outcome (the solid line) and taking the 

area under the resulting curve from birth to age 30 or 50. The denominator of the IV estimate was 

the value of the difference in BMI at age 30 or 50 (the dashed line in Figure 4). The final IV 

estimate was obtained by dividing the IV numerator by the denominator. The code for these 

derivations can be found in Web Appendix 2. 

When the instrument strength was constant over time, the estimates were unbiased with respect to 

the lifetime effect at both ages regardless of the shape of the exposure window (Table 1). The 

estimate is biased in all other scenarios and the bias was sensitive to not only the type of 

relationship between the genetic variant and the exposure but also the exposure window and age 

when the outcome was measured. For example, in the FTO scenario, the IV analysis 

underestimates the true effect at age 30 but overestimates the effect at age 50.  

When the 𝐺-𝐴 relationship changes with time, the bias is minimized to the degree that the measured 

𝐺-𝐴 relationship is a good summary of the average 𝐺-𝐴 relationship within the exposure window. 
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For example, in the scenario with the lowest bias, the FTO 𝐺-𝐴 scenario with the recent exposure 

window at age 30, the 𝐺-𝐴 relationship at age 30 is relatively close to the average 𝐺-𝐴 difference 

in the most important part of the exposure window. In the scenarios with the highest bias, such as 

the FTO 𝐺-𝐴 scenario and a critical exposure window at age 50, the 𝐺-𝐴 relationship when 

measured at age 50 is much smaller than the level in the exposure window. 

How common is it for genetic effects to vary with age? 

Despite the widespread use of genome wide association studies, few have investigated how genetic 

effects change with age. This is likely because genome wide association studies require large 

sample sizes to achieve adequate power and investigating effect modification by age would require 

even larger sample sizes. One recent, large meta-analysis of genome wide association studies of 

BMI studies found 15 loci that demonstrated different effects by age including FTO and MC4R 

which are commonly used in MR studies of the effect of BMI (17). A variety of other studies have 

also found effect modification by age for the effect of genetic variants on BMI (13–15). The same 

phenomenon has been observed with other phenotypes such as LDL cholesterol (18,19), 

Alzheimer's Disease (20) and blood pressure (21–23). 

For many genetic variants used in MR studies, there has been no investigation into whether age 

modifies the relationship between the genetic variant and the exposure. For some complex 

phenotypes we can infer effect modification by age. For example, consider ALDH2 and alcohol 

consumption. The ALHD2 genetic variant cannot have any effect on alcohol consumption until a 

person initiates alcohol consumption. Therefore, the effect of ALHD2 on alcohol consumption 

changes from zero before a person initiates alcohol consumption to a non-null effect afterward. If 

the effect of ALHD2 on alcohol consumption were constant with age after initiation, the MR 

estimate would correspond with a lifetime effect starting at initiation rather than conception. 
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However, people homozygous for the *2 allele are almost all never drinkers (24),therefore, for the 

effect of ALDH2 to be constant over time, people with at least one *1 allele would have to drink 

the same amount regardless of their age. Alcohol consumption peaks around age 20 and declines 

with age (25) meaning that the effect of ALDH2 on drinking necessarily decreases with age. In 

Web Appendix 3, we also demonstrate that genetic effects are almost guaranteed to change with 

time when there are bidirectional effects between two variables. Therefore, when there are 

bidirectional effects between two variables, including the more general and common situation of 

treatment-confounder feedback. Therefore, when there are bidirectional effects between two 

variables, the effect estimate will be biased but the test of whether one variable causes in the other 

will be valid in both directions. .  

Discussion 

MR is still a relatively new method having risen in popularity only in the last 20 years (1). The 

method has spread rapidly from exposures that are direct gene products (e.g., proteins) to complex 

phenotypes (e.g., BMI, alcohol consumption). While MR continues to develop new robust methods 

to address certain violations of the instrumental variable assumptions, little attention has been paid 

to issues that differentiate MR from classical IV analysis such as the estimation of lifetime effects 

and the (often unacknowledged) use of time-varying exposures. 

We have demonstrated that genetic variants whose genetic effect on the exposure of interest 

changes over time cannot typically be used to validly estimate lifetime effects with MR. We show 

this by deriving a bias formula in a simple case, deriving bias in several hypothetical scenarios, 

and computing inconsistent estimates in an empirical example. Indeed, when the genetic effect on 

exposure changes with time, the MR estimate does not intuitively correspond with any causal 

parameter and certainly is not a valid estimate of the lifetime effect defined here. Our results, and 
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the potential ubiquity of such genetic variants, calls into question the numeric estimates from many 

MR studies. Moreover, our results corroborate the intuition of prior skeptics that variations over 

the life-course complicate if not invalidate MR analyses (26). Although not discussed here, one 

silver lining to this conclusion is that, even if the numeric results are not interpretable due to time-

varying genetic effects, such MR studies can still potentially provide a valid test of certain causal 

null hypotheses (27). 

Whenever the goal of an MR study is to estimate a lifetime effect, investigators should ideally 

limit their analyses to genetic variants whose effects on exposure are constant over time or 

carefully consider how the time-varying genetic effect might impact the effect estimate. In many 

contexts this is verifiable and can be achieved by looking for a statistical interaction between the 

genetic variant, age and the exposure or by plotting the relationship between exposure and age 

stratified by allele in samples with sufficient variation in age. One possible sensitivity analysis for 

the importance of variation in effect of a genetic variant would be to calculate the MR estimate 

with more than one of the possible denominator estimates, as we did in our empirical example 

based on the Rotterdam Study data. If the MR estimate is not sensitive to the differences, the 

investigators may perhaps argue their conclusions are unlikely to be impacted. Note, of course, 

such sensitivity analyses depend upon rich longitudinal data. Investigators may also consider 

adapting our provided code to investigate other hypothetical scenarios that map onto their beliefs 

about their particular genetic variant, exposure, and outcome relationships as a means for 

investigating possible magnitudes of bias. 

We have proposed one definition of a lifetime effect in MR but certainly other interpretations could 

be given. One possible alternative is the effect of a point intervention at conception. Our 

interpretation and this interpretation are equivalent with time-fixed exposures or genetic variants 



14 
 

whose relationship to the exposure does not change with time. We demonstrate in Web Appendix 

4 that estimating this effect usually requires that the genetic variant affect the exposure only at 

conception and at no future time point, which is biologically implausible in most MR settings. 

Another possible reading of the prior literature is that MR estimates the effect of an average of a 

one-unit change in exposure across the lifetime, as opposed to the exact one-unit change at all time 

points proposed in the current paper. In addition to the reasons our proposed definition can be 

problematic, however, this definition is further complicated by multiple versions of treatment: 

except in the case when the exposure’s effect on the outcome is purely cumulative, the various 

versions of possible interventions would not necessarily result in the same effect size. More 

generally, this and recent work (7) suggests the importance of MR investigators providing 

unambiguous interpretations (and the assumptions upon which such interpretations rest) of their 

numeric estimates: if the investigators suggest they are not trying to estimate the lifetime effect as 

defined in the current paper, they should clarify what causal parameter they indeed are trying to 

estimate instead. 

In conclusion, we have provided a definition of lifetime effects that can be used in MR studies. In 

so doing, we also demonstrate that many genetic variants used in MR studies cannot be leveraged 

to validly estimate this definition of lifetime effect. We recommend future MR studies carefully 

consider the effect of interest and how  genetic variants whose effects change with time may impact 

the interpretability and validity of their results. 
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Figure 1—The relationship between body mass index and age by FTO allele in participants from 

the Rotterdam Study followed-up between 2009 and 2013 (n=5123) estimated using splines with 

five knots. The shaded regions are 95% confidence bands. 
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Figure 2—Causal graphs depicting the relationship between a genetic variant (G), an exposure (A) 

and an outcome (Y) when A) the exposure is time-fixed and B) the exposure is time-varying. 
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Figure 3—A causal graph depicting the relationship between a binary genetic variant (G) , an 

exposure (A) measured at two time points and an outcome (Y). The γn above the edges represent 

the parametric relationship between the variables joined by the edge. 
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Figure 4—16 hypothetical scenarios used to investigate possible magnitudes of bias in IV analyses. 

The solid line shows the relationship between the genetic variant and body mass index (BMI) and 

the dashed line shows the relevant exposure window. For the recent exposure scenario, the gray 

dashed line shows the relevant exposure window at age 30. The dashed lines are only shown to 

demonstrate the shape of the exposure window and are not to scale.  
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Table 1. Results from the 16 hypothetical scenarios described in Figure 4 comparing the true lifetime effect with 

the MR estimate when the instrument strength varies over time. 

    Age 30   Age 50 

Exposure window 

True 

effect 

MR 

estimate 

Absolute 

bias 

Relative 

bias (%) 

True 

effect 

MR 

estimate 

Absolute 

bias 

Relative 

bias (%) 

Constant genetic scenario        

 Uniform 1.2 1.2 0.0 0 2.0 2.0 0.0 0 

 Recent 2.0 2.0 0.0 0 2.0 2.0 0.0 0 

 Critical 2.0 2.0 0.0 0 2.0 2.0 0.0 0 

 Increasing 0.7 0.7 0.0 0 2.0 2.0 0.0 0 

Increasing genetic scenario        
 Uniform 1.2 1.0 -0.2 −18 2.0 1.5 −0.5 −25 

 Recent 2.0 1.8 -0.2 −10 2.0 1.8 −0.2 −8 

 Critical 2.0 1.6 -0.4 −20 2.0 1.3 −0.7 −36 

 Increasing 0.7 0.6 -0.1 −12 2.0 1.7 −0.3 −16 

Decreasing genetic scenario       
 Uniform 1.2 1.5 0.3 22 2.0 3.0 1.0 50 

 Recent 2.0 2.2 0.2 11 2.0 2.3 0.3 16 

 Critical 2.0 2.5 0.5 23 2.0 3.4 1.4 72 

 Increasing 0.7 0.8 0.1 14 2.0 2.7 0.7 34 

FTO genetic scenario        
 Uniform 1.2 0.9 −0.3 −22 2.0 3.7 1.7 85 

 Recent 2.0 2.0 0.0 −2 2.0 2.9 0.9 46 

 Critical 2.0 1.5 −0.5 −24 2.0 3.9 1.9 95 

 Increasing 0.7 0.7 −0.1 −8 2.0 3.7 1.7 85 

MR: Mendelian randomization 

 

 

 


