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Have you ever wondered how Mendelian randomization (MR) studies can estimate a lifetime 

effect when the exposure is only measured once (1)? This is incredible considering that other 

familiar methods (2) would require that the exposure (and time-varying covariates) be measured 

repeatedly and frequently throughout the life-course to estimate the same effect. MR avoids this 

by making important assumptions about time to estimate effects. For example, the                

assumption that the relationship between the genetic variant(s) and the exposure is constant 

through time (3) allows the estimation of a lifetime effect (as defined in Table 1) even when 

exposure is only measured once. Regardless of the methods used to infer causality, it is not 

possible to define a causal effect or hypothesis without thinking about time. This may be even 

more true for MR than for conventional methods because of the potentially long periods of time 

between when the proposed instruments are set and the exposure and outcome are measured (4). 

[Table 1 here] 

 

MR studies increasingly use multiple instruments, multiple outcomes and, as can be seen in 

recent publications, multiple exposures (5,6). The incorporation of multiple exposures in MR 

adds another wrinkle, however: is it possible to capture longitudinal relationships between 

variables without longitudinal data? In short, what assumptions do we have to make about time 

in order to use MR to estimate causal effects which involve the relationship between multiple 

exposures? And what causal effects are we even estimating? 

Here, we define lifetime effects for the parameters estimated with three of the more recently 

developed methods for incorporating multiple exposures into an MR framework: network MR 

(7), multivariable MR (8) and factorial MR (5). Network MR uses MR to estimate the effect of 

the exposure on the mediator but also the effect of the mediator on the outcome. Multiplying 
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these estimates results in an estimate of the indirect effect of the exposure on the outcome. 

Multivariable MR can estimate the direct effect of more than one variable on an outcome as long 

the MR assumptions hold for the collection of proposed instruments and exposures rather than 

having to hold for each variable individually. Factorial MR is similar to multivariable MR but 

can additionally estimate an interaction parameter between exposures. Adapting simulations 

from publications developing or using these methods, we demonstrate which longitudinal 

relationships can lead to biased estimates.  

To ground these pertinent points in an empirical example, we will consider the recent study by 

Sanderson and colleagues (6), in which the investigators used multivariable MR to study the 

effects of education and cognitive ability on body mass index. A priori, it seems reasonable to 

suspect that pre-education cognitive ability has an effect on education and education has an 

effect on post-education cognitive ability. However, such bidirectional relationships between the 

exposures are not readily encoded in the theory grounding multivariable MR, as the theory (like 

many MR methods) is really only developed for time-fixed exposures. So, does incorporating 

time into this example change our interpretation of the results or the likely validity of the 

estimates? 

Interpretation 

Thinking about variables as time-fixed or point exposures in the context of MR is a 

simplification that can be valid in special circumstances but often obscures important 

relationships that should not be ignored. Considering lifetime effects in the context of network, 

multivariable and factorial MR, therefore, requires extending our thinking from one time point 

(Figure 1a) to multiple time points (Figure 1b). Even just increasing from one time point to two 
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greatly increases the number of possible relationships between the exposures themselves and the 

outcome. For example, it allows the relationship between A and B to be bidirectional and also 

allows each variable to have a direct effect on the outcome at more than one point in time. 

[Figure 1 here] 

 

One definition of a total lifetime effect of a variable is the effect of shifting the trajectory of the 

exposure by one unit on the outcome measured at a specific point in time (Table 1). The goal of 

network and multivariable MR is to decompose this total effect into a direct effect of A on Y (or 

multiple direct effects of different variables in multivariable MR) and, in the case of network 

MR, an indirect effect. The analogous direct effect of A on Y in Figure 1b, as estimated by both 

network and multivariable MR, is the effect of shifting the trajectory of A by one unit while 

holding B to a specific trajectory (and vice-versa for the direct effect of B) (5). The indirect 

effect is the effect of shifting the trajectory of the “mediator”, B in Figure 1b, by the amount it 

would have shifted as a result of shifting A by one unit. It should be noted that both network and 

multivariable MR assume no interaction between variables A and B, that is, that the effect of 

each variable does not vary within strata of the other on the additive scale. The main effect for 

variable A in factorial MR is equivalent to the lifetime direct effect defined above but setting the 

trajectory for B to zero (and vice-versa for variable B). The interaction is then the effect of 

lifetime joint exposure minus the independent effect of variables A and B (i.e. while holding the 

other variable at baseline level). 

Simulations 

With well-specified definitions of the longitudinal parameters in mind, we can simulate data to 

determine whether these parameters are identifiable with MR-based approaches. We adapted 
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previously-published simulations to a setting with exposures varying over two time points 

(Figure 1): (i) Burgess et al (7) for network MR; (ii) the mediation scenario simulation published 

in Sanderson et al (6) and (iii) the Sanderson et al mediation scenario but with an interaction 

between A and B for factorial MR. The gray edges in Figure 1 were varied between 0 and 0.5 to 

whether they biased the estimates from each method. We chose not to include direct effects from 

the genetic variants to each variable at time 1 to avoid inducing bias due solely to time-varying 

relationships between the genetic variants and the exposures (3). For the same reason, we set the 

effect of each variable at time 0 on the same variable at time 1 to be equal to 1. 𝐺𝐴 and 𝐺𝐵 each 

represent one genetic variant for the network MR scenario and 10 variants each for the 

multivariable MR and factorial MR simulations. An additional ten variants were related to both 

A and B were added to the multivariable and factorial MR simulations. The network MR 

simulations had n=5000 (to match the original article) and all other simulations had n=30000 and 

all were run for 1000 iterations. A full description of the simulations and code can be found in 

the Supplementary methods and a full set of results can be found in the Supplementary results. 

Table 2 shows the results for network MR. When none of the gray arrows are added, the 

simulation is equivalent to the time-fixed scenario and is unbiased. The total effect is biased 

when the 𝐵0 to 𝐴1 arrow is added. The direct and indirect effects are biased in all other scenarios 

except when only the arrow from 𝐴0 to 𝐵1 is added. In the biased scenarios, the indirect effect is 

always overestimated and the direct effect is always underestimated but the direction of the bias 

will depend on the direction of the effect of the simulation parameters generating the bias.  

MR methods also be used to test causal hypotheses rather than to estimate the magnitude. 

Network MR also requires additional assumptions even when only the null hypothesis of no 

effect of both the indirect and direct effects is being tested (as opposed to estimating the 
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magnitude of effects). When B has no direct effect on Y (i.e. no indirect effect), network MR will 

falsely detect an indirect effect when B has an effect on A (when 𝐵0 has a causal effect on 𝐴1in 

our simulation). Therefore, testing the null hypothesis of no indirect effect, network MR requires 

the IV assumptions for each variable as well as an additional assumption that the mediator does 

not also cause the exposure. When A has no direct effect on Y (i.e. no direct effect), network MR 

will falsely detect a direct effect when there is an effect of the history of the mediator (when 

𝐵0has a direct effect on Y in our simulation). Therefore, testing the null hypothesis of no direct 

effect requires the additional assumption that the mediator, at the time measured, captures the 

entire mediated effect.  

[Table 2 here] 

Table 3 shows the results for the multivariable MR simulations when variable 𝐴 causes variable 

𝐵 at each time point. Unlike network MR, multivariable MR remains unbiased when feedback 

between 𝐴 and 𝐵 is added as long as there is no direct effect of variables 𝐴 and 𝐵 at time 0. The 

effect of 𝐴 is biased in all scenarios when direct effects of the exposures at time 0 are added. The 

effect of variable 𝐵 is only biased when the arrow from 𝐴0 to 𝐵1 is added. The pattern of biases 

changes with different data generation mechanisms (e.g., if 𝐵 causes 𝐴 or if there is no 

relationship between 𝐴 and 𝐵). Multivariable MR sometimes requires extra assumptions to test 

null hypotheses that will depend on the relationship between variables A and B. If variable A 

does not cause variable B, no additional assumptions are required to test the null hypothesis of a 

direct effect of A on Y. If variable A causes B, then an assumption that variable B does not direct 

cause Y other than the time at which it was measured. [Table 3 here] 
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As mentioned previously, both network and multivariable MR are not valid when there is an 

interaction between 𝐴 and 𝐵 even in the time-fixed cases. To examine factorial MR in the 

longitudinal setting, we added interactions to the simulation used in the multivariable MR 

simulations (results in the Supplementary results). When an interaction between variables 𝐴 and 

𝐵 was added only at time 1, factorial MR correctly estimated the interaction and the pattern of 

bias in the main effects was identical to that observed in multivariable MR. When an additional 

interaction was added to the baseline effects (when present), factorial MR was biased in all 

scenarios except when A and B do not causes each other at any time. 

Conclusion 

Understanding time is crucial to understanding MR, which becomes increasingly clear when the 

MR analysis involves multiple exposures of interest that may have complex relationships with 

one another over time. The MR methods examined here—network, multivariable and factorial 

MR—work under some but not all longitudinal causal structures. Intuitively, this happens 

because feedback (or interaction) between variables 𝐴 and 𝐵 makes it more difficult for these 

models to tease apart their independent effects. Returning to the Sanderson et al [Table 3 in 

reference (6)] example of cognitive ability, we can simulate data with a similar causal structure 

to see whether we would expect bias when cognitive ability both causes and is subsequently 

caused by education (Supplementary results). We find that the effect of cognitive ability is 

unbiased but that the effect of education on BMI requires there to be no direct effect of cognitive 

ability on BMI before the age of educational attainment. Therefore, if this were the true causal 

structure, we would expect that the degree of bias of the effect of education is tied to the degree 

to which cognitive ability before the age of educational attainment directly effects BMI. The 
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degree of bias more generally due to ignoring time in MR can be further evaluated using 

previous simulations (3). 

Because the bidirectional relationship between variables 𝐴 and 𝐵 is responsible for many of the 

biases described here, bidirectional MR may be of use to detect whether the relationship between  

𝐴 and 𝐵 is bidirectional in order to inform further analyses. We would caution researchers, 

however, that when the relationsip between 𝐴 and 𝐵 is truly bidirectional, two tests with 80% 

power will correctly identify the bidirectionality only 80% ∗ 80% = 64% of the time. 

Therefore, only high-powered bidirectional MR studies will be able to confidently eliminate the 

possibility of bidirectional effects. Moreover, traditional power analyses in MR are not yet 

parameterized for time-varying exposures (9). 

When there is feedback between variables, it should come as no surprise that disentangling their 

effects on an outcome will almost always require measuring them repeatedly, regardless of the 

analytic method used. We suggest that researchers wishing to use these MR methods for multiple 

exposures think carefully about their causal question and whether the relationship between the 

two variables of interest is likely to invalidate (or at least complicate) the MR method chosen. 
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Figure 1— Causal graph with (a) time-fixed exposures (left) and (b) time-varying exposures 

(right). G indicates genetic variants with subscripts indicating which variables they are 

associated with. A and B are the exposures of interest (B is considered the mediator for the 

network MR example), Y is the outcome and U is an unmeasured confounder. Numerical 

subscripts are used to show when a variable is measured in time. 



GA

GB

A0

B0

A1

B1

Y

U



Table 1—A description of the estimands of various MR analyses as well as counterfactual 
definitions. 

Type Estimand Counterfactual definition 

Classic MR Total effect 𝐸[𝑌𝑘
�̅�+1̅]  −  𝐸[𝑌𝑘

�̅�] 

Network MR Direct effect 𝐸[𝑌𝑘
�̅�+1̅,�̅�]  −  𝐸[𝑌𝑘

�̅�,�̅�] 
Indirect effect 𝐸[𝑌𝑘

�̅�,�̅��̅�+1̅
]  −  𝐸[𝑌𝑘

�̅�,�̅��̅�
] 

Multivariable MR Direct effect of A 𝐸[𝑌𝑘
�̅�+1̅,�̅�]  −  𝐸[𝑌𝑘

�̅�,�̅�] 

Direct effect of B 𝐸[𝑌𝑘
�̅�,�̅�+1̅]  −  𝐸[𝑌𝑘

�̅�,�̅�] 

Factorial MR Main effect of A 𝐸[𝑌𝑘
�̅�+1̅,�̅�=0]  −  𝐸[𝑌𝑘

�̅�,�̅�=0] 
Main effect of B 𝐸[𝑌𝑘

�̅�=0,�̅�+1̅]  −  𝐸[𝑌𝑘
�̅�=0,�̅�] 

Interaction of A and B 𝐸[𝑌𝑘
�̅�+1̅,�̅�+1̅]  −  𝐸[𝑌𝑘

�̅�+1̅,�̅�] − 𝐸[𝑌𝑘
�̅�,�̅�+1̅] + 𝐸[𝑌𝑘

�̅�,�̅�] 
Legend: Y-outcome, a-variable a, b-variable b, k-time at which the outcome is measured, variables with an overbar indicate a vector of values 

from conception to time k 

 



Table 2—Estimates and bias using network MR to estimate longitudinal parameters from simulated data with exposure and mediator measured at two 
time points. 

    Total effect 
 

Direct effect 
 

Indirect effect 

𝑨𝟎 ⟶𝒀 𝑩𝟎 ⟶𝒀 𝑨𝟎 ⟶𝑩𝟏 𝑩𝟎 ⟶𝑨𝟏 True Estimated Bias 
 

True Estimated Bias 
 

True Estimated Bias 

0.0 0.0 0.0 0.0 3.0 3.0 0.0  1.0 1.0 0.0  2.0 2.0 0.0 

0.0 0.0 0.0 0.5 3.0 2.7 -0.3  1.0 0.4 -0.6  2.0 2.2 0.2 

0.0 0.0 0.5 0.0 3.5 3.5 0.0  1.0 1.0 0.0  2.5 2.5 0.0 

0.0 0.0 0.5 0.5 3.5 3.0 -0.5  1.0 0.3 -0.7  2.5 2.7 0.2 

0.5 0.5 0.0 0.0 4.0 4.0 0.0  1.5 1.0 -0.5  2.5 3.0 0.5 

0.5 0.5 0.0 0.5 4.0 3.3 -0.7  1.5 0.6 -0.9  2.5 2.8 0.3 

0.5 0.5 0.5 0.0 4.5 4.5 0.0  1.5 0.8 -0.7  3.0 3.7 0.7 

0.5 0.5 0.5 0.5 4.5 3.7 -0.8  1.5 0.3 -1.2  3.0 3.3 0.3 

 



Table 3—Estimates and bias using multivariate MR to estimate longitudinal parameters from simulated data 
with exposure and mediator measured at two time points in a scenario where variable B mediates the effect 

of variable A (Mediation). 

    Variable A 
 

Variable B 

𝑨𝟎 ⟶𝒀 𝑩𝟎 ⟶𝒀 𝑨𝟎 ⟶𝑩𝟏 𝑩𝟎 ⟶𝑨𝟏 True Estimated Bias 
 

True Estimated Bias 

0.0 0.0 0.0 0.0 1.0 1.0 0.0  1.0 1.0 0.0 

0.0 0.0 0.0 0.5 1.0 1.0 0.0  1.0 1.0 0.0 

0.0 0.0 0.5 0.0 1.0 1.0 0.0  1.0 1.0 0.0 

0.0 0.0 0.5 0.5 1.0 1.0 0.0  1.0 1.0 0.0 

0.5 0.5 0.0 0.0 1.5 1.0 -0.5  1.5 1.5 0.0 

0.5 0.5 0.0 0.5 1.5 0.8 -0.8  1.5 1.5 0.0 

0.5 0.5 0.5 0.0 1.5 1.3 -0.3  1.5 1.3 -0.3 

0.5 0.5 0.5 0.5 1.5 1.0 -0.5  1.5 1.3 -0.2 
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