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Abstract

Reverse causation occurs when the outcome variable at an earlier timepoint, or a proxi-

mal precursor of the outcome (such as pre-clinical disease), has a causal effect on the risk

factor. This confounding by pre-clinical or prior outcome can lead to bias when trying to

estimate an average causal effect of the risk factor on the outcome. As genetic variants

are fixed at conception, it has been stated that Mendelian randomization investiga-

tions are protected from bias arising due to reverse causation, or even that Mendelian

randomization investigations are not affected by reverse causation. While Mendelian

randomization analyses have some protection against bias due to reverse causation, the

claim of complete immunity is a misconception. We provide three plausible scenarios

and accompanying examples of how reverse causation can influence Mendelian random-

ization estimates: 1) the genetic association with the risk factor is secondary to the effect

of the variant on the outcome or a proximal precursor of the outcome, 2) the genetic

association with the outcome is distorted by a feedback mechanism whereby the risk

factor and outcome both influence each other over time, and 3) the genetic association

with the outcome is distorted by an effect of the outcome in the parental generation on

the outcome in the offspring generation. In these scenarios, all causal effects typically

estimated in Mendelian randomization analyses will be biased, though hypothesis test-

ing can still be valid in Scenario 2 and 3 for a version of the causal null hypothesis. This

underscores the general recommendation to view Mendelian randomization as primarily

testing a causal null hypothesis rather than estimating a causal effect.
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Mendelian randomization uses genetic variants as instrumental variables to make

causal inferences about the effect of a risk factor on an outcome [1, 2]. If a genetic

variant satisfies the instrumental variable assumptions for the given risk factor and

outcome [3], then an association between the genetic variant and the outcome implies

the risk factor affects the outcome in some individuals at some point in the life-course

[4]. Combining the instrumental variable assumptions with further assumptions allows

valid testing of a more specific causal hypothesis and/or valid estimation of global or

local, and point or period average causal effects [5].

Two motivations for Mendelian randomization are primarily stated: avoiding bias

from unmeasured confounding and avoiding bias from reverse causation [6]. Reverse

causation occurs when the outcome variable at an earlier timepoint, or a proximal

precursor of the outcome (such as pre-clinical disease), has a causal effect on the risk

factor which can bias estimates of the effect of the risk factor on the outcome. Though

it can often be viewed as a specific form of confounding (when pre-clinical disease is

a shared cause of the risk factor and outcome [7]), reverse causation is conceptually

distinct enough from other forms of confounding to be considered as a phenomenon in

its own right. (We underscore that reverse causation does not imply that time flows

backwards or somehow that future measurements influence the past, but that even if

the outcome is measured at a later timepoint to the risk factor, either the outcome at

an earlier timepoint or a precursor of the outcome may have influenced the measured

value of the risk factor.)

An individual’s genetic code is fixed at conception. This implies that genetic associa-

tions are less vulnerable to bias from many sources of confounding and reverse causation.

For example, environmental or lifestyle factors that occur post-conception cannot be a

cause of the genetic variants and therefore cannot be a shared cause of the variants

and outcome. Further protection from confounding comes from the random allocation

of genetic variants during meiosis and from random mating within the population (al-

though completely random mating is not plausible, mating is often plausibly random

with respect to the genetic variants included in Mendelian randomization analyses) –

meaning that genetic variants are often independent of confounding factors other than

ancestry [8, 9].

It has also often been stated that the fixed nature of the genetic code provides

complete immunity to bias from reverse causation in Mendelian randomization stud-

ies because genetic variants must precede the outcome in time. For example, Davey

Smith and Ebrahim [10] wrote about “the lack of possibility of reverse causation as an

influence on exposure–outcome associations in both Mendelian randomization and ran-

domized controlled trial settings” and remarked “the instrument will not be influenced

by the development of the outcome (i.e., there will be no reverse causation)”. Here, we

demonstrate how reverse causation can lead to bias in Mendelian randomization analy-

ses. For each scenario, we show that even though the variant–outcome associations may

not suffer from reverse causation, reverse causation between the risk factor and outcome

either in individuals or across generations can result in bias in Mendelian randomization
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analyses. That is, even though the outcome may not cause the genetic variant (and

thus the variant–outcome association may not seem to suffer from reverse causation),

the type of reverse causation that affects traditional analyses may still indeed bias esti-

mates from Mendelian randomization studies (when a Mendelian randomization analysis

is undertaken to estimate a causal parameter) and invalidate causal conclusions (when

a Mendelian randomization analysis is undertaken to test a causal hypothesis) [11, 12].

Scenario 1. Genetic association with the risk factor is not pri-

mary

The first mechanism we consider is that a genetic variant is associated with the risk

factor via a primary effect of the variant on the outcome or on a precursor of the

outcome (Figure 1). As an example, testosterone has been hypothesized as a possible

causal risk factor for polycystic ovary syndrome (PCOS). Genetic variants that predict

testosterone concentration in women have been shown to be associated with risk of PCOS

[13]. However, one of the symptoms of PCOS is increased testosterone. Therefore, it may

not be that elevated testosterone that leads to increased risk of PCOS, but increased

predisposition to PCOS that leads to elevated testosterone levels. Genetic variants

identified as instruments for testosterone may not affect testosterone directly, but rather

via their association with PCOS. The variants may affect risk of PCOS directly (Figure

1a) or indirectly via an alternative risk factor for PCOS or pre-clinical PCOS (Figure

1b). The genetic variants are still primary in the causal chain, but reverse causation

between the putative risk factor and outcome means that the variants influence the risk

factor secondarily. In this case, an association between the genetic variants and outcome

can be present without a causal effect of the risk factor on the outcome.

Genetic associations will generally be lesser in strength when the path from the gene

to the trait is less direct. However, as sample sizes for genetic discovery increase, it is

increasingly likely that some genetic associations with risk factors are secondary to their

association with another variable. The chances of finding such a variant also increase

when reverse causation between the risk factor and outcome is stronger. In other words,

if Mendelian randomization is being used specifically because of concerns about reverse

causation in a traditional observational analysis, the risk of bias due to reverse causation

via this mechanism in Mendelian randomization will also be higher. In this scenario,

not only are effect estimates expected to be biased, but tests of causal null hypotheses

are also not valid.

Scenario 2. Feedback mechanism

Secondly, Mendelian randomization studies with genetic variants that have direct effects

only on the risk factor (i.e. they do not directly affect the outcome) can still suffer from

bias due to reverse causation. For instance, if the risk factor influences the outcome and

the outcome influences the risk factor at a later time-point (Figure 2a), then genetic as-
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sociations with the risk factor will be distorted, and Mendelian randomization estimates

may be misleading.

As an example, genetic variants that predict obesity have been shown to associate

with income in women [14]. However, income affects many lifestyle factors, including

obesity, leading to a feedback loop. A similar story can be told for cigarette smoking and

obesity: genetic predictors of obesity associate with increased smoking prevalence (per-

haps smokers seeking to reduce weight) [15], but genetic predictors of cigarette smoking

associate with decreased weight (as cigarette smoking is an appetite suppressant) [16].

Depending on the strength and direction of the reverse causal effect and the prevalence

of the outcome, genetic associations with the measured value of the risk factor can be

over- or under-estimated due to reverse causation [17]. However, some tests of causation

will be valid regardless of the presence of this type of reverse causation [5]. For instance,

this type of reverse causation will not affect the validity of a test of the sharp causal

null (that there is a causal effect in at least one person at one point in time) of the risk

factor on the outcome assuming the instrumental variable assumptions hold (Figure 2b).

This is because an association between the genetic variant and outcome still reflects the

existence of pathways that go through the risk factor first, even though effect estimation

cannot as readily tease apart the feedback loops.

Feedback scenarios can occur other than due to reverse causation. A different feed-

back scenario is that individuals with high levels of a risk factor will preferentially take

medication to lower the risk factor. For example, individuals with high levels of choles-

terol are more likely to take cholesterol-lowering medication, and similarly for blood

pressure. The reverse is true for factors that are beneficial for health outcomes. For

example, pregnant women with low iron status are more likely to take iron supplements

[18]. In extreme cases where intervention on the risk factor is common and substantial,

it may even be that medication or supplementation attenuates completely or even re-

verses genetic associations with the risk factor. This is particularly important in the

example of iron and pregnancy, as the risk factor of interest is not maternal iron levels

in general, but maternal iron levels during the critical period of pregnancy.

Scenario 3. Cross-generational effects

Finally, even though they are fixed at the start of an individual’s life, genetic variants are

inherited from an individual’s parents. Hence when considering effects that may span

across generations, an individual’s genetic variants are no longer primary in the causal

chain. The outcome in the parents could influence the outcome or confounders of the

outcome in the offspring directly, leading to a pathway from the offspring genetic variants

to the offspring outcome that is not via the offspring risk factor (Figure 3). While this

scenario stretches the common understanding of reverse causation somewhat, this is still

an example of the outcome influencing a downstream variable, even if the outcome in

this case is in the previous generation, and so we believe it is worth discussing while

addressing the topic of reverse causation.
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For instance, the same genetic variants that predispose an individual to increased

alcohol consumption also predisposed at least one of the individual’s parents to in-

creased alcohol consumption. Outcomes in the offspring generation may be driven by

the outcomes caused by the parents’ alcohol consumption, rather than from the off-

spring’s alcohol consumption directly. Hence there may be causal effects of alcohol even

amongst individuals who themselves do not drink. Additionally, increased parental

predisposition to drinking alcohol may affect offspring alcohol consumption, distorting

Mendelian randomization estimates. As a further example, genetic variants associated

with body mass index may be associated with outcomes not only due to the effect of

obesity in the individuals observed, but also due to obesity and its consequences in the

parent generation.

From the perspective of aetiology, this is not always such a serious problem as even if

the offspring outcomes are driven by the risk factor and its consequences in the parents,

it is still the risk factor that is causal for the outcome. However, from the perspective

of intervention, changing the risk factor in the offspring may not lead to the conse-

quences for offspring outcomes that are predicted by straightforward interpretation of

a Mendelian randomization estimate. Hence Mendelian randomization investigations

with cross-generational effects are able to assess the causal relevance of the risk factor

in a broad sense, in that they can test the sharp causal null that the risk factor affects

the outcome in at least one generation. However, the pathway by which the risk fac-

tor influences the outcome may be driven by the effect of the risk factor in a previous

generation.

Discussion and conclusion

In this short manuscript, we have discussed three ways in which Mendelian randomiza-

tion analyses may be susceptible to bias due to reverse causation. Although in some

cases a causal hypothesis can still be validly tested, in other cases causal inferences of

all types from the approach may be unreliable. Several methodological researchers have

already cautioned against interpretation of causal estimates from Mendelian randomiza-

tion as the expected impact of intervening on the risk factor in a clinical setting, or even

advised against presenting causal effect estimates at all [4, 19, 11]. This manuscript

provides further reasons for caution not only in the interpretation of effect estimates,

but also in the validity of causal null hypothesis testing. It is important to appreciate

context when interpreting findings from a Mendelian randomization analysis, and to be

aware that the estimated causal effect of the risk factor (which typically gets interpreted

as the impact of a lifelong change in the trajectory of a risk factor) may not be achievable

by a practical intervention on the risk factor in the target population.

There are several approaches that can be taken by investigators to mitigate or identify

bias due to reverse causation. Some of this guidance follows best practices for Mendelian

randomization studies more broadly [12]. Overall, where possible, Mendelian random-

ization analyses should be performed using genetic variants for which the mechanism

6



of association of the variants with the risk factor is both primary and well-understood.

As a consequence of this, investigators should prioritize Mendelian randomization anal-

yses for risk factors that have proximal genetic variants. When the mechanism linking

genetic variants and risk factors is unclear or distant, inferences from Mendelian ran-

domization generally carry less evidential weight. As for more advice more specific to

the scenarios considered here, first, statistical methods have been developed to help

distinguish whether genetic variants primarily influence the risk factor or another vari-

able (as per Scenario 1). The MR-Steiger method measures the proportion of variance

explained by a genetic variant in the risk factor and in the outcome [20] and can be

used to flag for removal from the analysis variants that are more strongly linked to the

outcome than the risk factor. This method is not guaranteed to identify Scenario 1,

and is sensitive to measurement error. Secondly, simulations can be used to explore

the extent of bias due to feedback mechanisms (as per Scenario 2), although this re-

lies on strong assumptions about the temporal nature and magnitude of the feedback

[17]. Thirdly, statistical methods have been developed to consider cross-generational

effects (as per Scenario 3) when data are available on parents and offspring [21, 22]. If

such data are not available, researchers should express caution in the interpretation of a

Mendelian randomization investigation when it is plausible that causal effects may span

across generations. Scenarios 2 and 3 further underscore the general recommendation

to view Mendelian randomization as primarily testing a causal null hypothesis rather

than estimating a causal effect [12].

In conclusion, while it is fair to say that Mendelian randomization investigations offer

some protection against reverse causation, it is not reasonable to claim that Mendelian

randomization investigations are totally immune from the phenomenon. Researchers

should consider carefully whether their findings could be explained by genetic variants

having a primary association with the outcome, and how previous versions of an outcome

(within an individual or across generations) can impact the stated risk factor.
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Figure 1: Diagrams illustrating relationships between a genetic variant (G), risk factor
(X), and an outcome (Y ), where the effect of the genetic variant on the risk factor is
a) through its effect on the outcome previous to the risk factor (Y0) and b) through a
confounder (C) – a common cause of risk factor and outcome. Unmeasured confounding
is represented by U .
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Figure 2: Diagrams illustrating time-varying relationships between a genetic variant
(G), risk factor (X), an outcome (Y ) and unmeasured confounder (U) at time 0 and
time 1 (indicated by subscripts) where a) the genetic variant has a primary effect on
the risk factor, and there are bidirectional effects between the risk factor and outcome
and b) the genetic variant has a primary effect on the risk factor, but only the reverse
causal effect of the outcome on the risk factor is present, meaning that genetic variant
is independent of the outcome.
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Figure 3: A cross-generational diagram of genetic variant (G), risk factor (X), and
outcome (Y ) in both the parent and child. The potential cross-generational reverse
causal effect of parental outcome on offspring confounder or outcome is displayed in
grey. When the risk factor causes the outcome in either or both generations (panel
a), Mendelian randomization estimates will typically be non-null, but biased. When
the risk factor does not cause the outcome in either generation (panel b), Mendelian
randomization estimates will not be biased and will provide a valid test of the sharp
causal null hypothesis. Shared causes of the parent’s exposure and outcome, and their
effects on the child’s exposure and outcome that are not relevant to the bias under study,
are omitted for clarity.
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