$$
A_{t=e^{i \pi}} \longrightarrow A_{t=0} \longrightarrow A_{t=1} \longrightarrow A_{t=\sqrt{2}} \longrightarrow A_{t=e} \longrightarrow A_{t=\pi}
$$

The only reason for time is so that everything doesn't happen at once.

$$
Y_{t=e^{i \pi}} \longrightarrow Y_{t=0} \longrightarrow Y_{t=1} \longrightarrow Y_{t=\sqrt{2}} \longrightarrow Y_{t=e} \longrightarrow Y_{t=\pi}
$$

$$
M_{t=e^{i \pi}} \longrightarrow M_{t=0} \longrightarrow M_{t=1} \longrightarrow M_{t=\sqrt{2}} \longrightarrow M_{t=e} \longrightarrow M_{t=\pi}
$$

$$
Z_{t=e^{i \pi}} \longrightarrow Z_{t=0} \longrightarrow Z_{t=1} \longrightarrow Z_{t=\sqrt{2}} \longrightarrow Z_{t=e} \longrightarrow Z_{t=\pi}
$$

Jeremy Labrecque

Leader Causal Inference Group
Dept. Epidemiology, Erasmus MC
j.labrecque@erasmusmc.nl

"...there have been thousands or maybe tens of thousands of papers working out details of this. It's been a great source of kind of inspiration of how quantum systems might be related to one another...

etrinting

ek vimwing

The only reason for time is so that everything doesn't happen at once.

We are good at thinking about time in certain contexts (e.g., time-varying effects).

Smoking $_{t=0} \longrightarrow$ Time to death

How does information get from
Smoking to death?

Smoking $_{t=0} \longrightarrow$ Time to death

How does information get from
Smoking to death?

Smoking $_{t=0} \longrightarrow$ Time to death

The only reason for time is so that everything doesn't happen at once.

Smoking $_{t=0} \longrightarrow$ Time to death

Example I

"...control for each covariate that is a cause of the exposure, or of the outcome, or of both; exclude from this set any variable known to be an instrumental variable"

- Vanderweele (2019)

"...control for each covariate that is a cause of the exposure, or of the outcome, or of both; exclude from this set any variable known to be an instrumental
- Vanderweele (2019)

"...control for each covariate that is a cause of the exposure, or of the outcome, or of both; exclude from this set any variable known to be an instrumental variable"
- Vanderweele (2019)

"...control for each covariate that is a cause of the exposure, or of the outcome, or of both; exclude from this set any variable known to be an instrumental
- Vanderweele (2019)
- If our causal question is the effect of $A_{t=0}$ on Y, we must adjust for Z
- Z is an IV when A is considered as a whole, is not an IV for $A_{t=0}$

- The null hypothesis of no effect of A at any time is still testable even without adjusting for Z

Example from genetics

Example from genetics

- A SNP that only affects the outcome through the exposure can still be confounder

Example from genetics

- A SNP that only affects the outcome through the exposure can still be confounder

Example from RCTs

Example from RCTs

- Must adjust for Z to estimate the point per protocol effect of $\mathrm{PSA}_{t=0}$
- Should NOT adjust for Z if you're estimating the joint effect of $\mathrm{PSA} A_{t=0}$ and $\mathrm{PS} A_{t=5}$

- Must adjust for Z to estimate the point per protocol effect of $\mathrm{PS} A_{t=0}$
- Should NOT adjust for Z if you're estimating the joint effect of $\operatorname{PS} A_{t=0}$ and $P S A_{t=5}$

One option for validly estimating the per-protocol effect in a pragmatic trial with a point intervention is to directly adjust for baseline prognostic factors that are also predictors of adherence, i.e. baseline confounders. Many statistical approaches are valid to adjust for confounders in per-protocol analyses.

Can replace $A_{t=5}$ with any mediator

Some consequences:

[assumption (A2.1)] no unmeasured confounding of the treatment-outcome relationship

A2.r:What do you need to adjust for?

Some consequences:

[assumption (A2.1)] no unmeasured confounding of the treatment-outcome relationship

A2.I:What do you need to adjust for? C_{1} and C_{3}

Some consequences:

[assumption (A2.1)] no unmeasured confounding of the treatment-outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediatoroutcome relationship. The measured covariates C included in the models need to

A2.I:What do you need to adjust for? C_{1} and C_{3}

A2.2:What do you need to adjust for?

Some consequences:

[assumption (A2.1)] no unmeasured confounding of the treatment-outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediatoroutcome relationship. The measured covariates C included in the models need to

A2.I:What do you need to adjust for? C_{1} and C_{3}

A2.2:What do you need to adjust for? C_{2}

Some consequences:

[assumption (A2.1)] no unmeasured confounding of the treatment-outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediatoroutcome relationship. The measured covariates C included in the models need to effects to be identified from the data, there must also be [assumption (A2.3)] no unmeasured confounding of the treatment-mediator relationship. Control must

A2.I:What do you need to adjust for? C_{1} and C_{3}

A2.2:What do you need to adjust for? C_{2}

A2.3:What do you need to adjust for?

Some consequences:

[assumption (A2.1)] no unmeasured confounding of the treatment-outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediatoroutcome relationship. The measured covariates C included in the models need to effects to be identified from the data, there must also be [assumption (A2.3)] no unmeasured confounding of the treatment-mediator relationship. Control must

A2.I:What do you need to adjust for? C_{1} and C_{3}

A2.2:What do you need to adjust for? C_{2}

A2.3:What do you need to adjust for? C_{3}

Some consequences:

[assumption (A2.1)] no unmeasured confounding of the treatment-outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediatoroutcome relationship. The measured covariates C included in the models need to effects to be identified from the data, there must also be [assumption (A2.3)] no unmeasured confounding of the treatment-mediator relationship. Control must

A2.I:What do you need to adjust for? C_{1} and C_{3}
A2.2:What doyou need to adjust for? C_{2}

A2.3:What do you needte adjust for? C_{3}

Some consequences:

$$
C_{1} \text { and } C_{3}
$$

[assumption (A2.1)] no unmeasured confounding of the treatment-outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediator- C_{2} outcome relationship. The measured covariates C included in the models need to effects to be identified from the data, there must also be [assumption (A2.3)] no C_{3} unmeasured confounding of the treatment-mediator relationship. Control must

Vanderweele 2016

In summary, controlled direct effects require [assumption (A2.1)] no unmeasured treatment-outcome confounding and [assumption (A2.2)] no unmeaImplied: C_{1}, C_{2} and C_{3}

Some consequences:

$$
C_{1} \text { and } C_{3}
$$

[assumption (A2.1)] no unmeasured confounding of the treatment-outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediator- C_{2} outcome relationship. The measured covariates C included in the models need to effects to be identified from the data, there must also be [assumption (A2.3)] no C_{3} unmeasured confounding of the treatment-mediator relationship. Control must

Vanderweele 2016

In summary, controlled direct effects require [assumption (A2.1)] no unmeasured treatment-outcome confounding and [assumption (A2.2)] no unmeaImplied: C_{1}, C_{2} and C_{3} Actual: C_{1} and C_{2}

Some consequences:

$$
C_{1} \text { and } C_{3}
$$

[assumption (A2.1)] no unmeasured confounding of the treatment-outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediator- C_{2} outcome relationship. The measured covariates C included in the models need to
effects to be identified from the data, there must also be [assumption (A2.3)] no C_{3} unmeasured confounding of the treatment-mediator relationship. Control must

In summary, controlled direct effects require [assumption (A2.1)] no unmeasured treatment-outcome confounding and [assumption (A2.2)] no unmeaImplied: C_{1}, C_{2} and C_{3}
Actual: C_{1} and C_{2}
A2.I should be: "no unmeasured confounding
 of the treatment-outcome relationship through paths that do not go through M"

Some consequences:

for all levels of a and m. However, controlled direct effects in general require stronger conditions for identification than do total causal effects. This is because the definition of a con-
 Vanderweele and Vansteelandt 2009

chapter, when we are interested in pathways and direct and indirect effects, the assumptions about confounding that are needed to identify these direct and indirect effects are even stronger than for total effects. We might often, perhaps almost Vanderweele 2016

Some consequences:

for all levels of a and m. However, controlled direct effects in
general require stronger conditions for identification than do
total causal effects. This is because the definition of a con-
Vanderweele and Vansteclandt 2oog
chapter, when we are interested in pathways and direct and indirect effects, the assumptions about confounding that are needed to identify these direct and indirect effects are even stronger than for total effects. We might often, perhaps almost

This is only true in general if assumptions for CDE are the assumptions for total effects plus adjusting for C_{2}

- CDE requires adjusting for C_{1} and C_{2}
- Total effect requires adjusting for C_{1} and C_{3}

Example 2

Exclusion restriction assumption: The instrument only affects the outcome through its effect on the exposure.

Exclusion restriction assumption: The instrument only affects the outcome through its effect on the exposure.

If you've only measured A_{1}, the red paths violate the exclusion restriction.

Exclusion restriction assumption: The instrument only affects the outcome through its effect on the exposure.

If you've only measured A_{1}, the red paths violate the exclusion restriction.

What is our causal question??

- Effect of A_{1} ?
- Effect of A at all times

What is our causal question??

- Effect of $A_{\text {? }}$?
- Effect of A at all times (assuming the relationship between Z and A is constant)

What is our causal question??

- Effect of Λ_{1} ?
- Effect of A at all times (assuming the relationship between Z and A is constant)

What is our causal question??

- Effect of A_{1} ?
- Effect of A at all times (assuming the relationship between Z and A is constant)

What is our causal question??

- Effect of A_{1} ?
- Effect of A at all times (assuming the relationship between Z and A is constant)

IV setup

What is our causal question??

- Effect of Λ_{1} ?
- Effect of A at all times (assuming the relationship between Z and A is constant)

IV setup

What is our causal question??

- Effect of Λ_{1} ?
- Effect of A at all times (assuming the relationship between Z and A is constant)

What is our direct effect??

- Effect of A on Y not passing through M_{1} ? - Effect of A on Y not passing through M at any time?

Mediation setup

What is our direct effect??

- Effect of A on Y not passing through M_{1} ?
- Effect of A on Y not passing through M at any time?

Example 3

Estimand: Effect of A_{1} on Y_{1}

$$
C_{1}
$$

If C, A and Y are truly
measured cross-
sectionally, they cannot A_{1}
cause each other.

$$
Y_{1}
$$

Estimand: Effect of A_{1} on Y_{1}

$$
C_{1}
$$

Estimand: Effect of A_{1} on Y_{1}

$$
C_{1}
$$

Cannot estimate anything of interest

 here but the test of whether A causes Y atY_{1} any time is still valid.

Estimand: Effect of A_{1} on Y_{1}

Estimand: Effect of A_{1} on Y_{1}

Here, we need to adjust for C_{0} and C_{-1} but all we have is C_{1}

Estimand: Effect of A_{0} on Y_{1}

Estimand: Effect of A_{0} on Y_{1}

Here, we need to adjust for C_{0}, C_{-1} and A_{-1}

Acknowledging that "everything doesn't happen at once" can: I. Help you identify biases

Acknowledging that "everything doesn't happen at once" can:
r. Help you identify biases
2. Make you recognize you're answering a different causal question

Questions?

j.labrecque@erasmusmc.nl @ja_labrecque_ jeremylabrecque.org

