$$A_{t=e^{i\pi}} \longrightarrow A_{t=0} \longrightarrow A_{t=1} \longrightarrow A_{t=\sqrt{2}} \longrightarrow A_{t=e} \longrightarrow A_{t=\pi} \longrightarrow$$

The only reason for time is so that everything doesn't happen at once.

$$Y_{t=e^{i\pi}} \longrightarrow Y_{t=0} \longrightarrow Y_{t=1} \longrightarrow Y_{t=\sqrt{2}} \longrightarrow Y_{t=e} \longrightarrow Y_{t=\pi} \longrightarrow$$

$$M_{t=e^{i\pi}} \longrightarrow M_{t=0} \longrightarrow M_{t=1} \longrightarrow M_{t=\sqrt{2}} \longrightarrow M_{t=e} \longrightarrow M_{t=\pi} \longrightarrow$$

$$Z_{t=e^{i\pi}} \longrightarrow Z_{t=0} \longrightarrow Z_{t=1} \longrightarrow Z_{t=\sqrt{2}} \longrightarrow Z_{t=e} \longrightarrow Z_{t=\pi} \longrightarrow$$

Leader Causal Inference Group Dept. Epidemiology, Erasmus MC j.labrecque@erasmusmc.nl

"...there have been **thousands or maybe tens of thousands of papers** working
out details of this. It's been a great source
of kind of inspiration of how quantum
systems might be related to one another...

"...there have been **thousands or maybe tens of thousands of papers** working
out details of this. It's been a great source
of kind of inspiration of how quantum
systems might be related to one another...

...but it's not the real world. So of the three possibilities, negative curvature, zero curvature and positive curvature, the one that we've understood is the furthest from observable physical reality."

- Andrew Strominger

- Conditional exchangeability
 Positivity
 Consistency
 No measurement error
 Well-specified models

euriting Viring

ewitting

The only reason for time is so that everything doesn't happen at once.

We are good at thinking about time in certain contexts (e.g., time-varying effects).

$\operatorname{Smoking}_{t=0}$ — Time to death

How does information get from Smoking to death?

$\operatorname{Smoking}_{t=0}$ — Time to death

How does information get from Smoking to death?

 $\operatorname{Smoking}_{t=0} \longrightarrow \operatorname{Time to death}$

The only reason for time is so that everything doesn't happen at once.

 $\operatorname{Smoking}_{t=0} \longrightarrow \operatorname{Time to death}$

Example 1

- If our causal question is the effect of $A_{t=0}$ on Y, we must adjust for Z
- Z is an IV when A is considered as a whole, is not an IV for $A_{t=0}$
- The null hypothesis of no effect of A at any time is still testable even without adjusting for Z

Example from genetics

$$SNP$$

$$\downarrow$$

$$BMI_{t=0} \longrightarrow BMI_{t=5} \longrightarrow Body Image Disorder_{t=10}$$

Example from genetics

• A SNP that only affects the outcome through the exposure can still be confounder

Example from genetics

 $\rightarrow BMI_{t=5} \longrightarrow \text{Body Image Disorder}_{t=10}$

• A SNP that only affects the outcome through the exposure can still be confounder

Example from RCTs

$$PSA_{t=0} \xrightarrow{Z} PSA_{t=5} \xrightarrow{PSA_{t=10}} Y_{t=10}$$

Example from RCTs

- Must adjust for Z to estimate the point per protocol effect of $PSA_{t=0}$
- Should NOT adjust for Z if you're estimating the joint effect of $PSA_{t=0}$ and $PSA_{t=5}$

Example from RCTs

- Must adjust for Z to estimate the point per protocol effect of $PSA_{t=0}$
- Should NOT adjust for Z if you're estimating the joint effect of $PSA_{t=0}$ and $PSA_{t=5}$

One option for validly estimating the per-protocol effect in a pragmatic trial with a point intervention is to directly adjust for baseline prognostic factors that are also predictors of adherence, i.e. baseline confounders. Many statistical approaches are valid to adjust for confounders in per-protocol analyses.

Murray et al 2019

Can replace $A_{t=5}$ with any mediator

Some consequences:

[assumption (A2.1)] no unmeasured confounding of the treatment–outcome relationship

A2.1: What do you need to adjust for?

Some consequences:

[assumption (A2.1)] no unmeasured confounding of the treatment–outcome relationship

A2.1:What do you need to adjust for? C_1 and C_3

[assumption (A2.1)] no unmeasured confounding of the treatment–outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediator–outcome relationship. The measured covariates *C* included in the models need to

A2.1:What do you need to adjust for? C_1 and C_3

A2.2: What do you need to adjust for?

[assumption (A2.1)] no unmeasured confounding of the treatment–outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediator–outcome relationship. The measured covariates *C* included in the models need to

A2.1:What do you need to adjust for? C_1 and C_3

A2.2:What do you need to adjust for? C_2

[assumption (A2.1)] no unmeasured confounding of the treatment–outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediator–outcome relationship. The measured covariates C included in the models need to effects to be identified from the data, there must also be [assumption (A2.3)] no unmeasured confounding of the treatment–mediator relationship. Control must Vanderweele 2016

A2.1:What do you need to adjust for? C_1 and C_3

A2.2:What do you need to adjust for? C_2

A2.3: What do you need to adjust for?

[assumption (A2.1)] no unmeasured confounding of the treatment–outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediator–outcome relationship. The measured covariates C included in the models need to effects to be identified from the data, there must also be [assumption (A2.3)] no unmeasured confounding of the treatment–mediator relationship. Control must Vanderweele 2016

A2.1:What do you need to adjust for? C_1 and C_3

A2.2:What do you need to adjust for? C_2

A2.3: What do you need to adjust for? C_3

[assumption (A2.1)] no unmeasured confounding of the treatment–outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediator–outcome relationship. The measured covariates C included in the models need to effects to be identified from the data, there must also be [assumption (A2.3)] no unmeasured confounding of the treatment–mediator relationship. Control must Vanderweele 2016

A2.1:What do you need to adjust for? C_1 and C_3

A2.2: What do you need to adjust for? C_2

A2.3: What do you need to adjust for?

 \longrightarrow Adjusting for C_3 is mentioned twice!

C_1 and C_3

[assumption (A2.1)] no unmeasured confounding of the treatment–outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediator– C_2 outcome relationship. The measured covariates C included in the models need to effects to be identified from the data, there must also be [assumption (A2.3)] no C_3 unmeasured confounding of the treatment–mediator relationship. Control must Vanderweele 2016

In summary, controlled direct effects require [assumption (A2.1)] no unmeasured treatment–outcome confounding and [assumption (A2.2)] no unmeasured: C_1 , C_2 and C_3

C_1 and C_3

[assumption (A2.1)] no unmeasured confounding of the treatment–outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediator– C_2 outcome relationship. The measured covariates C included in the models need to effects to be identified from the data, there must also be [assumption (A2.3)] no C_3 unmeasured confounding of the treatment–mediator relationship. Control must Vanderweele 2016

In summary, controlled direct effects require [assumption (A2.1)] no unmeasured treatment-outcome confounding and [assumption (A2.2)] no unmea

Implied: C_1 , C_2 and C_3

Actual: C_1 and C_2

 C_1 and C_3

[assumption (A2.1)] no unmeasured confounding of the treatment–outcome relationship and [assumption (A2.2)] no unmeasured confounding of the mediator– C_2 outcome relationship. The measured covariates C included in the models need to effects to be identified from the data, there must also be [assumption (A2.3)] no C_3 unmeasured confounding of the treatment–mediator relationship. Control must Vanderweele 2016

In summary, controlled direct effects require [assumption (A2.1)] no unmeasured treatment-outcome confounding and [assumption (A2.2)] no unmeasured

Implied: C_1 , C_2 and C_3

Actual: C_1 and C_2

A2.1 should be: "no unmeasured confounding of the treatment-outcome relationship through paths that do not go through M"

for all levels of a and m. However, controlled direct effects in general require stronger conditions for identification than do total causal effects. This is because the definition of a con
Vanderweele and Vansteelandt 2009

chapter, when we are interested in pathways and direct and indirect effects, the assumptions about confounding that are needed to identify these direct and indirect effects are even stronger than for total effects. We might often, perhaps almost Vanderweele 2016

for all levels of a and m. However, controlled direct effects in general require stronger conditions for identification than do total causal effects. This is because the definition of a con-

chapter, when we are interested in pathways and direct and indirect effects, the assumptions about confounding that are needed to identify these direct and indirect effects are even stronger than for total effects. We might often, perhaps almost Vanderweele 2016

This is only true in general if assumptions for CDE are the assumptions for total effects plus adjusting for C_2

- CDE requires adjusting for C_1 and C_2
- Total effect requires adjusting for C_1 and C_3

Example 2

Exclusion restriction assumption: The instrument only affects the outcome through its effect on the exposure.

Exclusion restriction assumption: The instrument only affects the outcome through its effect on the exposure.

If you've only measured A_1 , the red paths violate the exclusion restriction.

Exclusion restriction assumption: The instrument only affects the outcome through its effect on the exposure.

If you've only measured A_1 , the red paths violate the exclusion restriction.

- Effect of A_1 ?
- Effect of A at all times

- Effect of A_1 ?
- Effect of A at all times (assuming the relationship between Z and A is constant)

- Effect of A_1 ?
- Effect of A at all times (assuming the relationship between Z and A is constant)

	Linear exposure window		
	5 year	10 year	25 year
BMI			
$\mathrm{rs}1558902$	5 (0,9)	$10 \ (3,19)$	$25\ (12,39)$
rs6567160	6 (-1,14)	$10 \ (-1,24)$	$19 \ (1,43)$
rs13021737	$15 \ (6,28)$	$33\ (15,59)$	$65 \ (31,116)$
$\mathrm{rs}10938397$	$11\ (1,25)$	$15 \ (-3,38)$	$23\ (-6,64)$
rs543874	6 (-3,18)	$19\ (2,42)$	$51\ (19{,}101)$
$\mathrm{rs}2207139$	$10\ (-1,20)$	$13 \ (-3,32)$	29 (3,66)
$\mathrm{rs}11030104$	0 (-9,9)	2 (-12,22)	8 (-13,40)
rs3101336	$18 \ (-2,52)$	39(1,107)	$79 \ (13,216)$
$\mathrm{rs}7138803$	2 (-9,13)	$6 \ (-11,29)$	$19 \ (-11,65)$
$\mathrm{rs}10182181$	$12\ (4,24)$	$26\ (10,48)$	$41\ (14,\!80)$
Score	4 (3,5)	9(7,11)	$23\ (18,29)$

- Effect of A₁?
- Effect of A at all times (assuming the relationship between Z and A is constant)

	Linear exposure window		
	5 year	10 year	25 year
BMI			
rs1558902	5 (0,9)	$10 \ (3,19)$	$25\ (12,39)$
rs6567160	$6 \ (-1,14)$	$10 \ (-1,24)$	$19 \ (1,43)$
$\mathrm{rs}13021737$	$15 \ (6,28)$	$33\ (15,59)$	$65 \ (31{,}116)$
$\mathrm{rs}10938397$	$11\ (1,25)$	$15 \ (-3,38)$	$23 \ (-6,64)$
rs543874	6 (-3,18)	19(2,42)	$51\ (19{,}101)$
rs2207139	$10 \ (-1,20)$	$13 \ (-3,32)$	29 (3,66)
rs11030104	0 (-9,9)	2 (-12,22)	8 (-13,40)
rs3101336	$18 \ (-2,52)$	39(1,107)	79 (13,216)
rs7138803	2(-9,13)	6 (-11,29)	$19 \ (-11,65)$
rs10182181	12(4,24)	$26 \ (10,48)$	41 (14,80)
Score	4(3,5)	9 (7,11)	23 (18,29)

- Effect of A_1 ?
- Effect of A at all times (assuming the relationship between Z and A is constant)

	Linear exposure window		
	5 year	10 year	25 year
BMI			
rs1558902	5 (0,9)	$10 \ (3,19)$	$25\ (12,39)$
rs6567160	6 (-1,14)	$10 \ (-1,24)$	$19 \ (1,43)$
$\mathrm{rs}13021737$	15 (6,28)	$33\ (15,59)$	$65 \ (31{,}116)$
$\mathrm{rs}10938397$	$11\ (1,25)$	$15 \ (-3,38)$	$23 \ (-6,64)$
rs543874	6 (-3,18)	19(2,42)	$51\ (19,101)$
rs2207139	$10 \ (-1,20)$	$13 \ (-3,32)$	$29 \ (3,66)$
rs11030104	0 (-9,9)	2 (-12,22)	8 (-13,40)
rs3101336	$18 \ (-2,52)$	39(1,107)	79 (13,216)
rs7138803	2 (-9,13)	$6 \ (-11,29)$	$19 \ (-11,65)$
rs10182181	$12\ (4,24)$	$26\ (10,48)$	$41\ (14,\!80)$
Score	4 (3,5)	9(7,11)	$23\ (18,29)$

IV setup

- Effect of A₁?
- Effect of A at all times (assuming the relationship between Z and A is constant)

IV setup

What is our causal question??

- Effect of A_1 ?
- Effect of A at all times (assuming the relationship between Z and A is constant)

What is our direct effect??

- Effect of A on Y not passing through M_1 ?
- Effect of A on Y not passing through M at any time?

Mediation setup

What is our direct effect??

- Effect of A on Y not passing through M_1 ?
- Effect of A on Y not passing through M at any time?

Mediation setup

Example 3

Estimand: Effect of A_1 on Y_1

 C_1

If C, A and Y are truly measured cross-sectionally, they cannot cause each other.

 A_1

 Y_1

 \mathcal{O}_1

 C_1

Estimand: Effect of A_1 on Y_1

Estimand: Effect of A_1 on Y_1

Acknowledging that "everything doesn't happen at once" can:

1. Help you identify biases

Acknowledging that "everything doesn't happen at once" can:

- 1. Help you identify biases
- 2. Make you recognize you're answering a different causal question

Questions?

j.labrecque@erasmusmc.nl @ja_labrecque_ jeremylabrecque.org

